A ,\A@C)@A /\ h
BEST-LMIC

J Biomed Eng Syst Technol Low Middle Income Ctries 2026; 1(1): 45-56
Journal of Biomedical Engineering Systems and Technologies for
Low- and Middle-Income Countries

Early Cardiovascular Disease Detection: An Improved Pan-
Tompkins Algorithm for QRS Detection in Electrocardiogram

Ahadzi E, Hasmin SD', Acquah I', Adjei PE!

' Department of Computer Engineering, College of Engineering, Kwame Nkrumah University
of Science and Technology, Kumasi, Ghana

" Corresponding author: Eyram Ahadzi (email: eyramahadzi8@gmail.com)

Abstract

Cardiovascular diseases (CVDs) are the leading cause of death globally, with low- and middle-
income countries (LMICs) bearing the greatest burden. Electrocardiograms (ECGs), which
reflect the heart's electrical activity, are an essential tool in diagnosing CVD. The QRS
complex is the most prominent wave in an ECG signal and is used for evaluating the overall
heart function of an individual. The Pan-Tompkins algorithm is widely used for the detection
of QRS complexes. It is, however, susceptible to baseline wander noise, has decreased
sensitivity for diverse ECG morphologies, and exhibits real-time delay, leading to its
suboptimal performance in QRS complex detection. This study presents an improved Pan-
Tompkins approach that combines the strengths of the Pan-Tompkins algorithm with a
Recurrent Neural Network (RNN) to deliver more accurate and efficient QRS detection. The
proposed algorithm achieved precision, recall, and F1-scores above 96% on Lead II of the
MIT-BIH Arrhythmia Database. Overall, false positive and false negative rates were below
0.05%, calculated across the selected segments from all patient records. Execution time was
reduced by 4% relative to the original Pan—Tompkins algorithm on identical ECG segments,
directly lowering latency and improving real-time performance. A band-pass filter of 6-16 Hz
was used, which improved robustness against baseline wander, effectively reducing noise. The
algorithm demonstrated enhanced resilience to morphological variability in ECG signals,
ensuring more reliable detection across diverse patterns. By integrating this Al-driven
algorithm into low-cost, portable ECG devices, there is strong potential to support early
detection of CVDs, particularly in underserved areas. This work contributes to a practical,
scalable solution that can help strengthen digital health infrastructure and improve clinical
outcomes in LMICs.
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1. Introduction

According to the World Health Organization
(WHO), cardiovascular diseases (CVDs)
stand as the leading cause of global mortality,
resulting in nearly 25.6 million deaths in
2020." More than 80% of CVD deaths occur
in low- and middle-income countries
(LMICs), highlighting the severity of the
burden in these regions.”? While high-income
countries (HICs) have seen a decline in CVD-
related deaths, LMICs are experiencing a
continuous rise, with annual mortality rates
reaching approximately 300 to 600 deaths per
100,000 people.* One significant and often
undiagnosed subgroup of CVDs is cardiac
arrhythmias, which involve irregularities in
the heart’s rhythm.** These conditions,
including atrial fibrillation, can lead to
serious complications such as stroke and
heart failure, or sudden cardiac death if not
detected early.’

Electrocardiograms (ECGs) play a vital role
in the detection of CVDs, as they reflect the
electrical activity of the heart and consist of a
P wave, a QRS complex, and a T segment,®
which shows normal rhythm. The P wave is
representative of the contraction of the atria,
the QRS complex corresponds to ventricular
contraction, and the T wave is representative
of the repolarization of the ventricles.

Among the ECG waveforms, the QRS
(Figure 1) complex is the most pronounced
wave, providing information on heart rate
and rhythm abnormalities.”

Accurate and timely detection of the QRS
complex is therefore essential for diagnosing
rhythm conditions, including various forms
of arrhythmias, as well as other cardiac
conditions such as myocardial infarction.’
Before the emergence of wearable
technologies, the Pan-Tompkins algorithm
stood out as a simple yet widely used method

for QRS detection.”®

S

Figure 1. ECG signal depicting PORST
morphology.

Although generally accurate, the algorithm
faces challenges in the presence of noise,
diverse morphologies of the ECG,” or
unusual, and wider QRS complexes.'®
Moreover, it introduces real-time processing
delays and demonstrates suboptimal accuracy
when accessing publicly accessible data.® As
wearable devices evolve, the volume of
ECGs generated for analysis
emphasizing the need for more efficient
algorithms.!" These drawbacks significantly
hinder its performance in mobile and
wearable devices, which are increasingly
important in LMICs where healthcare access
is limited and early diagnosis is crucial.

increases,

To address the aforementioned limitations,
this study proposes an improved Pan-
Tompkins algorithm that combines the Pan-
Tompkins with Machine Learning (ML),

specifically Recurrent Neural Networks
(RNNs). The goal 1is to improve
morphological robustness, mitigate the

effects of baseline wander noise, and reduce
latency, thereby enabling faster and more
accurate QRS detection. By integrating this
Al-enhanced algorithm into portable, mobile-
platform-based ECG devices, the solution
offers a practical pathway toward scalable
and reliable CVD diagnostics, particularly in
underserved regions.
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2. Related Works

This section reviews research efforts focused
on enhancing the Pan-Tompkins algorithm
(Figure 2) for improved QRS detection. The
Pan-Tompkins  algorithm  remains a
foundational approach in QRS detection. It
leverages a multi-stage processing pipeline to
identify the characteristic R peak within the
QRS complex. It consists of two phases: a

pre-processing  phase, which involves
filtering, differentiation, squaring, and
integration, and a decision-making phase, by
applying two thresholds for R peak
detection.'?
Input Signal .

N—

( N\
Thresholding Integration ](7 Squaring
(. J

Figure 2. Block Diagram for Pan-Tompkins

Algorithm.

In the first stage, the ECG signal undergoes
filtering using a cascaded high-pass and low-
pass filter combination. This filtering process,
as described by Pan and Tompkins, serves as
a noise rejection mechanism, attenuating
unwanted frequencies outside the bandwidth
of interest for QRS complexes. The low-pass
filter gets rid of signals of higher frequencies,
whereas the high-pass filter gets rid of signals
of lower frequencies.

Low-pass filter equation:
y(nT) = 2y(nT — T) — y(nT — 2T) + x(nT) — 2x(nT — 6T) + x(nT — 12T) (1)

High-pass filter equation:
y(nT) = 32x(nT — 16T) — [y(nT — T) + x(nT) — x(nT — 32T)] 2)

Bandpass filter equation:

ybampass(nT) = Highpass(LowPass(x(nT)) 3)

where y(nT): filtered signal, x(nT): input signal, and T: sampling period.

The signal is then differentiated from point to
point to highlight the rapid changes
associated with QRS complexes. The positive

and negative deflections of the differentiated
signal are then squared. This makes the data
point positive and non-linearly amplifies the
derivative output.

The signal is then passed through a moving
window integrator to obtain the waveform
feature in addition to the slope of the R-wave.
This integration stage extracts the overall
waveform features while preserving the slope
information. For R peak detection, Pan and
Tompkins used a dual threshold to
discriminate the location of the QRS
complexes. These thresholds dynamically
adjust based on the characteristics of the
filtered signal. The higher of the two
thresholds (Threshold 1) is used in the first
assessment of the signal. If no R-peak is
detected within a pre-determined period, the
lower threshold (Threshold 2) is applied,
necessitating the use of a search-back
approach to look back in time for the QRS

complex.'>!

Despite its effectiveness, the algorithm
struggles with baseline wander, irregular
morphologies'® and performance in wearable
technologies.?

To address these challenges, the Hamilton-
Tompkins algorithm refined peak detection
rules by incorporating median filtering and
peak level estimation. While this approach
reduced false positives, it still exhibited
limitations in noise-prone environments.®

Similarly, wavelet transform-based methods
combine Pan-Tompkins with multiscale
analysis to improve the detection of atypical
QRS morphologies. These approaches
enhance adaptability but often suffer from
increased computational complexity and
susceptibility to noise amplification.’

Imtiaz and Khan, using Pan Tompkins++,

introduced modifications such as an
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expanded 5-18 Hz bandpass filter and an
additional threshold to improve detection
sensitivity. However, its reliance on more
thresholds and filters risks latency.’

The AccYouRate Modified Pan-Tompkins
Algorithm (AMPT) simplifies detection by
using only the final filtered signal, improving
clarity but reducing adaptability to signals
with high amplitude variation.!

Overall, while each variation aims to enhance
detection, challenges with noise resilience,
morphological adaptability, and real-time
performance persist. These limitations
motivate the improved Pan-Tompkins
approach proposed in this study, which
integrates Recurrent Neural Networks
(RNNs) with the Pan-Tompkins algorithm to
enhance the robustness and efficiency of QRS
detection.

3. Materials and Methods

a. Dataset

The MIT-BIH Arrhythmia Database, a
widely recognized and valuable resource for
cardiac signal analysis, was utilized for this
study and comprises 48 half-hour snippets of
2-channel (Lead II and Lead V5) ECG
recordings made from 47 people sampled at
360 Hz,*’ resulting in approximately 60,000
samples per record. Each record includes beat
annotations and rhythm information, with a
range of arrhythmic conditions such as
premature ventricular contractions (PVCs),
atrial fibrillation, and normal sinus rhythm.
The dataset includes detailed annotations on
a beat-by-beat basis, enabling precise
evaluation of detection algorithms. It also
contains segments of normal sinus rhythm
with clearly defined P waves, QRS
complexes, and T waves. This combination
of normal and abnormal rhythms supports the
development and evaluation of models across

a broad spectrum of cardiac conditions.!
While not all patient records contain
arrhythmias, the dataset as a whole spans a
wide range of rhythm types, ensuring that
algorithm performance was evaluated across
both normal and arrhythmic conditions.

b. Data Preprocessing

The preprocessing approach adopted in this
study 1s based on the Pan-Tompkins
algorithm, with a key modification aimed at
improving QRS detection performance. A
band-pass filter with a frequency range of 6 —
16 Hz was applied, replacing the 5 — 15 Hz

range.

Input Signal

w Band-Pass Filter
(6- 16 Hz)
RNN for Peak )

Figure 3. Block Diagram for Improved Pan-

Differentiation

Squaring

Tompkins Algorithm.

Following filtering, the signal was
differentiated, squared, and passed through a
moving window integrator. These stages are

consistent with the Pan-Tompkins algorithm.

c. Peak Detection

This study uses a recurrent neural network
(RNN) model to enhance R-peak detection.
RNNSs have shown a superior ability to model
sequential data such as ECG signals due to
their inherent temporal dependencies and the
ability to retain contextual information in
time steps,'* which are critical for accurate
identification of complex QRS. They also
tend to require less computational resources
than transformer-based models, making them
practical for deployment in low-resource and
real-time settings.

All experiments were conducted on a
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MacBook Pro with a 1.4 GHz Quad-Core
Intel Core 15 processor and on Google Colab
with a T4 GPU, using Python 3.12 and
TensorFlow 2.16. The architecture consisted
of an initial Conv1D layer (64 filters, kernel
size 3, ReLU activation), followed by Batch
Normalization, MaxPooling1 D and Dropout
for feature extraction and regularization. Two
stacked bidirectional Long Short-Term
Memory (LSTM) layers (128 units each)
captured temporal dynamics, followed by
dense layers with dropout and L2
regularization, and a final sigmoid output
layer for classification of R-peaks (Figure 4).
The classification task was framed as a binary
decision problem, where each 128-sample
window was labeled 1 if it contained an
annotated R-peak (based on the ground truth
annotations from the MIT-BIH Arrhythmia
Database) and 0 otherwise.

The RNN model was trained using Lead II
ECG data with the first 50,000 samples from
each subject to ensure a representative dataset
for capturing diverse cardiac events while
optimizing computational efficiency. The
dataset was split into training (70%),
validation (20%), and test (10%) subsets in a
segment-based manner, which may slightly
overestimate generalization performance.
Given the diverse range of rhythms in the
MIT-BIH  database, including  both
arrhythmic and non-arrhythmic patterns, this
test set composition was essential for
evaluating the model’s R-peak detection
performance  across  various  cardiac
conditions, thereby supporting its potential
applicability in broader diagnostic settings.

The training process involved 10 epochs with
a linearly decaying learning rate starting from
0.001, achieving an accuracy of 97.70% on
the test set.

i) Bidirectional LSTM

ConviD(RelU)

1) BatchNormolization

MaxPool1D

=7 Fully Connected Layer

Dropout & L2 Regularization

Figure 4. RNN-based architecture for R-peak
detection.

d. Model Application

The ECG signals from the MIT-BIH
Arrhythmia Database, sampled at 360 Hz,
underwent standard preprocessing steps
including filtering, differentiation, squaring,
and moving window integration as per the
Pan-Tompkins algorithm. However, to
enable the trained RNN model to work on
datasets with varying sampling rates, signals
were resampled to 360 Hz during peak
detection. ~ This  resampling
compatibility with the model’s input
requirements and may facilitate adaptation to
ECG signals from sources with varying
sampling rates.

€nsures

To facilitate practical application, the trained
model was saved and can be used for
predictions without the need for retraining.
For future predictions, the saved model can
be applied directly to resampled and filtered
ECG signals using the same pre-processing
steps. This approach streamlines the process
and ensures consistent results across datasets,
regardless of their original sampling rate.
Furthermore, to improve the accuracy of peak
detection, a search-back mechanism was
implemented to address potential missing
peaks. This method scanning
backward from each detected peak to ensure

involves

that no peaks are overlooked, thus enhancing
the reliability of the peak detection process.
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e. Experimental Configurations

We evaluated the effectiveness of our
proposed method in detecting R peaks using
three experimental configurations. The first
setup involved the Pan-Tompkins algorithm,
implemented as a baseline for R-peak
detection. The second configuration used the
Recurrent Neural Network (RNN) applied
directly without traditional preprocessing
steps such as Dbandpass filtering or
differentiation. This setup served to evaluate
the model’s ability to detect R-peaks without
any preprocessing and provided insight into
how much preprocessing contributes to
performance. The third configuration,
referred to as the improved Pan-Tompkins
algorithm method, combined Pan-Tompkins-
inspired preprocessing (bandpass filtering
between 616 Hz, differentiation, squaring,
and moving window integration) with the
RNN for R peak detection.

To support qualitative and quantitative
evaluation, multiple ECG signal segments
were randomly selected from different patient
records. One signal segment was used to
visually demonstrate the transformation
process through each stage of the algorithm,
from the original ECG signal to final R-peak
detection. Additionally, four signal segments
from four different patients were used to
compare R-peak detection performance
across the three experimental configurations.

To assess baseline wander removal, ten ECG
signal segments from ten different patients
were randomly selected. For each segment,
the standard deviation (SD) of the baseline
component was computed for the raw signal,
the Pan-Tompkins filtered signal, and the
signal improved
bandpass filtering approach. The SD values
obtained from the Pan-Tompkins and
improved methods were then compared using

processed using our

a paired t-test, with the corresponding p-
value calculated to determine the statistical
significance of the observed difference in
baseline  suppression. For  qualitative
two representative segments
from these ten were selected to visually
compare the unfiltered signal, the Pan-
Tompkins filtered output, and the improved
Pan-Tompkins filtered result. Quantitative
performance metrics were computed using
the entire ECG recordings from all patient
records across both leads to ensure robustness

illustration,

and generalizability. However, to assess
average execution time, a consistent
representative segment was extracted from
each record and used uniformly across all

configurations.

4. Results

The effectiveness of our improved algorithm
was assessed using standard performance
metrics, including sensitivity, precision, F1
score, false negative rate (FNR), false posi-
tive rate (FPR), and average execution time.
These metrics were evaluated on all ECG
recordings across both leads from the MIT-
BIH Database, as summarized in Table 1 for
Lead II and Table 2 for Lead V5. Standard
deviation noise (SDN) and baseline wander
are not independent, with baseline wander
partly contributing to SDN.!> A decrease in
standard deviation reflects a reduction in
baseline wander, indicating lower variability
in the ECG signal. Accordingly, standard de-
viation was used to assess baseline drift, with
lower values suggesting reduced wander and
improved signal quality, as presented in
Table 3. Figure 5 shows the signal at different
stages of our improved algorithm.
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Figure 5. Stages of our improved algorithm: (a) Original ECG, (b) Preprocessed signal after
filtering, differentiation, squaring, and integration, (c) Detected R peaks.
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Table 1. Comparison of Performance Metrics on Lead 11

Vethod Sen (%) Pre (%) F1(%) FNR (%) FPR (%) Time (s)
Pan-Tompkins 96.56 98.44 97.45 0.13 0.25 51.96
RNN (No Preprocessing) 98.73 78.02 86.47 0.02 0.49 42.32
Improved Pan-Tompkins (RNN  96.73 99.88 98.24 0.03 0.03 48.60

with preprocessing)

Table 2. Comparison of Performance Metrics on Lead V5

Method Sen (%) Pre(%) F1(%) FNR(%) FPR (%) Time(s)
Pan-Tompkins 89.68 95.03 91.50 0.10 0.28 48.84
RNN (No Preprocessing) 99.31 68.17 80.12 0.02 0.53 42.05
Improved Pan-Tompkins (RNN 93.60 96.86 94.57 0.04 0.04 48.08

with preprocessing)

Table 3. Standard deviation of the baseline wander in original and filtered signals

Signal Original Signal  After Filtering (Pan-Tompkins)  After Filtering (Improved
Pan-Tompkins)
1 0.1204 0.2051 0.0681
2 0.1387 0.2013 0.0890
3 0.8654 0.7386 0.7123
4 0.2038 0.1465 0.1415
5 0.2973 0.1916 0.1895
6 0.1779 0.1452 0.1437
7 0.1394 0.2111 0.0684
8 0.4581 0.3355 0.3317
9 0.5904 0.3888 0.3156
10 0.1500 0.1254 0.1278

A paired t-test was conducted to compare the
standard deviation values obtained using the
Pan-Tompkins bandpass filter and the
improved Pan-Tompkins bandpass filter
across the ten signal segments. The test
revealed a statistically significant reduction in
baseline drift using the improved method (p =
0.0273).

Figures 6, 7, and 8 below show a visual
comparison of ECG signals using the three
experimental configurations. In these figures,
false detections are indicated in green, and
missed detections are shown in purple.
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Figure 9. Comparison of baseline wander reduction on first two ECG signals (Signal 1 and
Signal 2). Each set shows the original signal, filtered signal using the standard Pan-Tompkins
method, and filtered signal using the improved 6—16 Hz bandpass filter.

5. Discussion

Figure 6, 7, and 8 illustrate the performance
of the three experimental R peak detection
methods: the Pan-Tompkins algorithm, an
RNN model using the unprocessed ECG
signal, and the improved Pan-Tompkins
algorithm. The primary objective of this
study was to address key limitations in the
Pan-Tompkins algorithm, particularly with
sensitivity to noise, signal variability, and
real-time delay, while ensuring adaptability
across diverse ECG morphologies.

Although reliable, the Pan-Tompkins
algorithm (Figure 6) exhibited increased
latency and was more susceptible to baseline
wander and morphological variations, which
impacted detection accuracy under non-ideal
conditions. Its reliance on fixed thresholds
made it less effective when processing ECG
signals with varying amplitudes or irregular
morphologies.

The RNN model, using the unprocessed ECG
data (Figure
sensitivity

7), demonstrated strong
and  specificity, learning
generalized features directly from the signal.
However, the lack of preprocessing made it

vulnerable to noise, resulting in inconsistent
heart rate estimations and lower precision.
This inconsistency became more evident in
signals with irregular morphologies, where
the model failed to generalize effectively,
leading to false detections and missed peaks.

The proposed improved algorithm (Figure 8)
significantly enhances signal quality before
feeding it into the RNN. This led to a
in the standard deviation of
baseline drift (Figure 9), yielding a cleaner

reduction

ECG waveform without compromising the
morphological features essential for accurate
R peak detection. To quantify this
improvement, a paired t-test was conducted
on the baseline standard deviation values
from ten ECG segments filtered using both
the Pan-Tompkins and the improved
bandpass methods. The results showed a
statistically significant reduction in baseline
variability with the 1mproved Afilter,
confirming the method’s robustness against
low-frequency drift. With reduced noise
interference and improved signal clarity, the
RNN was better equipped to detect peaks
consistently different ECG
morphologies.

acCross
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Furthermore, this preprocessing pipeline
contributed to a notable reduction in
execution time, which directly translated to
lower latency. To further strengthen detection
accuracy, a search-back mechanism was
incorporated to allow the system to recover
missed peaks. The search-back logic
dynamically adjusts based on signal
variations, boosting recall by capturing peaks
that may have been skipped due to transient
noise, amplitude fluctuations, or atypical
morphology. Importantly, this was achieved
without significantly increasing processing
time, ensuring that the algorithm remains
computationally efficient and suitable for
real-time use. The combined improvements
introduced in this study demonstrate the
potential for a more robust, adaptive, and
efficient R peak detection method, effectively
addressing key limitations of conventional
algorithms and enhancing performance under
diverse physiological conditions.

This study, however, has some limitations.
The algorithm was evaluated only on a single
database (MIT-BIH Arrhythmia Database),
which may limit generalizability. Cross-
validation was not performed, affecting the
assessment of robustness. The method has
also not yet been deployed in real-world
clinical or community settings, which is
important to evaluate practical feasibility and
impact. Future work should focus on
implementing the algorithm in community
health settings LMICs,
accessible and reliable ECG screening can
play a vital role in early diagnosis and
intervention. To enhance robustness and

across where

generalizability, subsequent studies should
incorporate  k-fold cross-validation and
evaluate performance on larger, more diverse
ECG datasets, including locally sourced
LMIC
reporting

datasets from populations.

Performance should include

variability measures, such as the standard
deviation of precision, recall, and F1-scores,
to provide a comprehensive assessment of
reliability.

By prioritizing low computational complexity
and robustness to noisy acquisition
environments, this approach directly
addresses the constraints of ECG deployment
in primary healthcare facilities across

LMICs.

6. Conclusion

This study demonstrates that integrating the
Pan-Tompkins algorithm with a slight
modification to the bandpass filter and an
RNN model enhances R peak detection
accuracy while reducing baseline wander and
processing The modifications
introduced led to improved signal quality,
making the approach more robust against
noise and morphological variations. These
advancements support real-time applications
such as wearable ECG monitoring systems,
where reliability and efficiency are critical.

latency.

7. Recommendations

Future work should aim to validate and
implement the algorithm in real-world
settings, particularly in LMICs, and to assess
its performance across larger, more diverse
ECG datasets to ensure robustness and
reliability.

Authors' Contributions

The project was conceptualized by EA and
SDH. EA served as the principal author,
conducted the experiments, and drafted the
initial manuscript. SDH contributed to data
processing and analysis. IA provided input
and guided manuscript PEA
provided supervisory oversight, refined the
research  objectives, and also guided
manuscript revisions. All authors reviewed
and approved the final manuscript.

revisions.

55



A ,\A@C)@A /\ h
BEST-LMIC

Declaration of Interests

The authors declare that they have no known
competing financial interests or personal
relationships that could have appeared to
influence the work reported in this paper.

References

1. Meng Qi et al. “Arrhythmia
classification detection based on
multiple electrocardiograms databases”.
In: Plos one 18.9 (2023), €0290995.

2. Elsah Tegene Asefa, Tadesse Dukessa
Gemmechu, Kedir Negesso Tukeni, et
al. “Increase in Cardiovascular Disease
Mortality in Low-and Middle- Income
Countries: A Time for Action”. In:
Ethiopian Journal of Health Sciences
35.1 (2025).

3. Oluwabunmi Ogungbe et al.
“Medication adherence interventions for
cardiovascular disease in low-and
middle-income countries: a systematic
review”. In: Patient preference and
adherence (2021), pp. 885-897.

4. Homeyra Amiri et al. “Prediction of
high-risk cardiac arrhythmia based on
optimized deep active learning”. In:
IEEE Access (2025).

5. K Kumar et al. “Electro Cardio Gram
Using Different Machine Learning
Techniques for Early Heart Attack
Prediction”. In: Journal of Neonatal
Surgery 14.19s (2025), pp. 769-776.

6. MAZ Fariha et al. “Analysis of Pan-
Tompkins algorithm performance with
noisy ECG signals”. In: Journal of
Physics: Conference Series. Vol. 1532.
IOP Publishing. 2020, p. 012022.

7. Feifei Liu et al. “The accuracy on the
common Pan-Tompkins based QRS
detection methods through low-quality
electrocardiogram database”. In:
Journal of Medical Imaging and Health
Informatics 7.5 (2017), pp. 1039— 1043.

8. Luca Neri et al. “Algorithm for mobile
platform-based real-time QRS
detection”. In: Sensors 23.3 (2023), p.
1625.

10.

11.

12.

13.

14.

15.

Md Niaz Imtiaz and Naimul Khan.
“Pan-Tompkins++: A robust approach
to detect R-peaks in ECG signals”. In:
2022 IEEE International Conference on
Bioinformatics and Biomedicine
(BIBM). IEEE. 2022, pp. 2905-2912.
Jose Fernandez, Matthew Harris, and
Carsten Meyer. “Combining algorithms
in automatic detection of R-peaks in
ECG signals”. In: 18th IEEE
Symposium on Computer-Based
Medical Systems (CBMS’05). IEEE.
2005, pp. 297-302.

Wenjie Cai and Danqin Hu. “QRS
complex detection using novel deep
learning neural networks”. In: IEEe
Access 8 (2020), pp. 97082-97089.
Jiapu Pan and Willis J. Tompkins. “A
Real-Time QRS Detection Algorithm”.
In: IEEE Transactions on Biomedical
Engineering BME-32.3 (1985), pp.
230-236. DOI: 10.1109/
TBME.1985.325532.

Patrick S Hamilton and Willis J
Tompkins. “Quantitative investigation
of QRS detection rules using the MIT/
BIH arrhythmia database”. In: IEEE
transactions on biomedical engineering
12 (1986), pp. 1157-1165.

Yaqoob Ansari et al. “Deep learning for
ECG Arrhythmia detection and
classification: an overview of progress
for period 2017-2023”. In: Frontiers in
Physiology 14 (2023), p. 1246.
Estrella Everss-Villalba et al. “Noise
maps for quantitative and clinical
severity towards long-term ECG
monitoring”. In: Sensors 17.11 (2017),
p. 2448.

56



