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Abstract
Cardiovascular diseases (CVDs) are the leading cause of death globally, with low- and middle-
income countries (LMICs) bearing the greatest burden. Electrocardiograms (ECGs), which 
reflect the heart's electrical activity, are an essential tool in diagnosing CVD. The QRS 
complex is the most prominent wave in an ECG signal and is used for evaluating the overall 
heart function of an individual. The Pan-Tompkins algorithm is widely used for the detection 
of QRS complexes. It is, however, susceptible to baseline wander noise, has decreased 
sensitivity for diverse ECG morphologies, and exhibits real-time delay, leading to its 
suboptimal performance in QRS complex detection. This study presents an improved Pan-
Tompkins approach that combines the strengths of the Pan-Tompkins algorithm with a 
Recurrent Neural Network (RNN) to deliver more accurate and efficient QRS detection. The 
proposed algorithm achieved precision, recall, and F1-scores above 96% on Lead II of the 
MIT-BIH Arrhythmia Database. Overall, false positive and false negative rates were below 
0.05%, calculated across the selected segments from all patient records. Execution time was 
reduced by 4% relative to the original Pan–Tompkins algorithm on identical ECG segments, 
directly lowering latency and improving real-time performance. A band-pass filter of 6–16 Hz 
was used, which improved robustness against baseline wander, effectively reducing noise. The 
algorithm demonstrated enhanced resilience to morphological variability in ECG signals, 
ensuring more reliable detection across diverse patterns. By integrating this AI-driven 
algorithm into low-cost, portable ECG devices, there is strong potential to support early 
detection of CVDs, particularly in underserved areas. This work contributes to a practical, 
scalable solution that can help strengthen digital health infrastructure and improve clinical 
outcomes in LMICs.
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1. Introduction
According to the World Health Organization 
(WHO), cardiovascular diseases (CVDs) 
stand as the leading cause of global mortality, 
resulting in nearly 25.6 million deaths in 
2020.1 More than 80% of CVD deaths occur 
in low- and middle-income countries 
(LMICs), highlighting the severity of the 
burden in these regions.2 While high-income 
countries (HICs) have seen a decline in CVD-
related deaths, LMICs are experiencing a 
continuous rise, with annual mortality rates 
reaching approximately 300 to 600 deaths per 
100,000 people.3 One significant and often 
undiagnosed subgroup of CVDs is cardiac 
arrhythmias, which involve irregularities in 
the heart’s rhythm.4,5 These conditions, 
including atrial fibrillation, can lead to 
serious complications such as stroke and 
heart failure, or sudden cardiac death if not 
detected early.5

Electrocardiograms (ECGs) play a vital role 
in the detection of CVDs, as they reflect the 
electrical activity of the heart and consist of a 
P wave, a QRS complex, and a T segment,6 

which shows normal rhythm. The P wave is 
representative of the contraction of the atria, 
the QRS complex corresponds to ventricular 
contraction, and the T wave is representative 
of the repolarization of the ventricles. 

Among the ECG waveforms, the QRS 
(Figure 1) complex is the most pronounced 
wave, providing information on heart rate 
and rhythm abnormalities.7

Accurate and timely detection of the QRS 
complex is therefore essential for diagnosing 
rhythm conditions, including various forms 
of arrhythmias, as well as other cardiac 
conditions such as myocardial infarction.7

Before the emergence of wearable 
technologies, the Pan-Tompkins algorithm 
stood out as a simple yet widely used method 

for QRS detection.7,8

Figure 1. ECG signal depicting PQRST 
morphology.

Although generally accurate, the algorithm 
faces challenges in the presence of noise, 
diverse morphologies of the ECG,9 or 
unusual, and wider QRS complexes.10

Moreover, it introduces real-time processing 
delays and demonstrates suboptimal accuracy 
when accessing publicly accessible data.8 As 
wearable devices evolve, the volume of 
ECGs generated for analysis increases, 
emphasizing the need for more efficient 
algorithms.11 These drawbacks significantly 
hinder its performance in mobile and 
wearable devices, which are increasingly 
important in LMICs where healthcare access 
is limited and early diagnosis is crucial. 

To address the aforementioned limitations, 
this study proposes an improved Pan-
Tompkins algorithm that combines the Pan-
Tompkins with Machine Learning (ML), 
specifically Recurrent Neural Networks 
(RNNs). The goal is to improve 
morphological robustness, mitigate the 
effects of baseline wander noise, and reduce 
latency, thereby enabling faster and more 
accurate QRS detection. By integrating this 
AI-enhanced algorithm into portable, mobile-
platform-based ECG devices, the solution 
offers a practical pathway toward scalable 
and reliable CVD diagnostics, particularly in 
underserved regions.
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2. Related Works
This section reviews research efforts focused 
on enhancing the Pan-Tompkins algorithm 
(Figure 2) for improved QRS detection. The 
Pan-Tompkins algorithm remains a 
foundational approach in QRS detection. It 
leverages a multi-stage processing pipeline to 
identify the characteristic R peak within the 
QRS complex. It consists of two phases: a 
pre-processing phase, which involves 
filtering, differentiation, squaring, and 
integration, and a decision-making phase, by 
applying two thresholds for R peak 
detection.12

Figure 2. Block Diagram for Pan-Tompkins 
Algorithm.

In the first stage, the ECG signal undergoes 
filtering using a cascaded high-pass and low-
pass filter combination. This filtering process, 
as described by Pan and Tompkins, serves as 
a noise rejection mechanism, attenuating 
unwanted frequencies outside the bandwidth 
of interest for QRS complexes. The low-pass 
filter gets rid of signals of higher frequencies, 
whereas the high-pass filter gets rid of signals 
of lower frequencies. 

The signal is then differentiated from point to 
point to highlight the rapid changes 
associated with QRS complexes. The positive 

and negative deflections of the differentiated 
signal are then squared. This makes the data 
point positive and non-linearly amplifies the 
derivative output.  

The signal is then passed through a moving 
window integrator to obtain the waveform 
feature in addition to the slope of the R-wave.   
This integration stage extracts the overall 
waveform features while preserving the slope 
information. For R peak detection, Pan and 
Tompkins used a dual threshold to 
discriminate the location of the QRS 
complexes. These thresholds dynamically 
adjust based on the characteristics of the 
filtered signal. The higher of the two 
thresholds (Threshold 1) is used in the first 
assessment of the signal. If no R-peak is 
detected within a pre-determined period, the 
lower threshold (Threshold 2) is applied, 
necessitating the use of a search-back 
approach to look back in time for the QRS 
complex.12,13

Despite its effectiveness, the algorithm 
struggles with baseline wander, irregular 
morphologies10 and performance in wearable 
technologies.8

To address these challenges, the Hamilton-
Tompkins algorithm refined peak detection 
rules by incorporating median filtering and 
peak level estimation. While this approach 
reduced false positives, it still exhibited 
limitations in noise-prone environments.8

Similarly, wavelet transform-based methods 
combine Pan-Tompkins with multiscale 
analysis to improve the detection of atypical 
QRS morphologies. These approaches 
enhance adaptability but often suffer from 
increased computational complexity and 
susceptibility to noise amplification.7

Imtiaz and Khan, using Pan Tompkins++, 
introduced modifications such as an 



expanded 5–18 Hz bandpass filter and an 
additional threshold to improve detection 
sensitivity. However, its reliance on more 
thresholds and filters risks latency.9

The AccYouRate Modified Pan-Tompkins 
Algorithm (AMPT) simplifies detection by 
using only the final filtered signal, improving 
clarity but reducing adaptability to signals 
with high amplitude variation.10 

Overall, while each variation aims to enhance 
detection, challenges with noise resilience, 
morphological adaptability, and real-time 
performance persist. These limitations 
motivate the improved Pan-Tompkins 
approach proposed in this study, which 
integrates Recurrent Neural Networks 
(RNNs) with the Pan-Tompkins algorithm to 
enhance the robustness and efficiency of QRS 
detection.

3. Materials and Methods

a. Dataset
The MIT-BIH Arrhythmia Database, a 
widely recognized and valuable resource for 
cardiac signal analysis, was utilized for this 
study and comprises 48 half-hour snippets of 
2-channel (Lead II and Lead V5) ECG 
recordings made from 47 people sampled at 
360 Hz,3,9 resulting in approximately 60,000 
samples per record. Each record includes beat 
annotations and rhythm information, with a 
range of arrhythmic conditions such as 
premature ventricular contractions (PVCs), 
atrial fibrillation, and normal sinus rhythm. 
The dataset includes detailed annotations on 
a beat-by-beat basis, enabling precise 
evaluation of detection algorithms. It also 
contains segments of normal sinus rhythm 
with clearly defined P waves, QRS 
complexes, and T waves. This combination 
of normal and abnormal rhythms supports the 
development and evaluation of models across 

a broad spectrum of cardiac conditions.¹
While not all patient records contain 
arrhythmias, the dataset as a whole spans a 
wide range of rhythm types, ensuring that 
algorithm performance was evaluated across 
both normal and arrhythmic conditions.

b. Data Preprocessing
The preprocessing approach adopted in this 
study is based on the Pan-Tompkins 
algorithm, with a key modification aimed at 
improving QRS detection performance. A 
band-pass filter with a frequency range of 6 – 
16 Hz was applied, replacing the 5 – 15 Hz 
range.

Figure 3. Block Diagram for Improved Pan-
Tompkins Algorithm.

Following filtering, the signal was 
differentiated, squared, and passed through a 
moving window integrator. These stages are 
consistent with the Pan-Tompkins algorithm.

c. Peak Detection
This study uses a recurrent neural network 
(RNN) model to enhance R-peak detection. 
RNNs have shown a superior ability to model 
sequential data such as ECG signals due to 
their inherent temporal dependencies and the 
ability to retain contextual information in 
time steps,14 which are critical for accurate 
identification of complex QRS. They also 
tend to require less computational resources 
than transformer-based models, making them 
practical for deployment in low-resource and 
real-time settings.

All experiments were conducted on a 
48
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MacBook Pro with a 1.4 GHz Quad-Core 
Intel Core i5 processor and on Google Colab 
with a T4 GPU, using Python 3.12 and 
TensorFlow 2.16. The architecture consisted 
of an initial Conv1D layer (64 filters, kernel 
size 3, ReLU activation), followed by Batch 
Normalization, MaxPooling1D and Dropout   
for feature extraction and regularization. Two 
stacked bidirectional Long Short-Term 
Memory (LSTM) layers (128 units each) 
captured temporal dynamics, followed by 
dense layers with dropout and L2 
regularization, and a final sigmoid output 
layer for classification of R-peaks (Figure 4). 
The classification task was framed as a binary 
decision problem, where each 128-sample 
window was labeled 1 if it contained an 
annotated R-peak (based on the ground truth 
annotations from the MIT-BIH Arrhythmia 
Database) and 0 otherwise.

The RNN model was trained using Lead II 
ECG data with the first 50,000 samples from 
each subject to ensure a representative dataset 
for capturing diverse cardiac events while 
optimizing computational efficiency. The 
dataset was split into training (70%), 
validation (20%), and test (10%) subsets in a 
segment-based manner, which may slightly 
overestimate generalization performance. 
Given the diverse range of rhythms in the 
MIT-BIH database, including both 
arrhythmic and non-arrhythmic patterns, this 
test set composition was essential for 
evaluating the model’s R-peak detection 
performance across various cardiac 
conditions, thereby supporting its potential 
applicability in broader diagnostic settings. 

The training process involved 10 epochs with 
a linearly decaying learning rate starting from 
0.001, achieving an accuracy of 97.70% on 
the test set.

Figure 4. RNN-based architecture for R-peak 
detection.

d. Model Application
The ECG signals from the MIT-BIH 
Arrhythmia Database, sampled at 360 Hz, 
underwent standard preprocessing steps 
including filtering, differentiation, squaring, 
and moving window integration as per the 
Pan-Tompkins algorithm. However, to 
enable the trained RNN model to work on 
datasets with varying sampling rates, signals 
were resampled to 360 Hz during peak 
detection. This resampling ensures 
compatibility with the model’s input 
requirements and may facilitate adaptation to 
ECG signals from sources with varying 
sampling rates.

To facilitate practical application, the trained 
model was saved and can be used for 
predictions without the need for retraining. 
For future predictions, the saved model can 
be applied directly to resampled and filtered 
ECG signals using the same pre-processing 
steps. This approach streamlines the process 
and ensures consistent results across datasets, 
regardless of their original sampling rate. 
Furthermore, to improve the accuracy of peak 
detection, a search-back mechanism was 
implemented to address potential missing 
peaks. This method involves scanning 
backward from each detected peak to ensure 
that no peaks are overlooked, thus enhancing 
the reliability of the peak detection process.
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e. Experimental Configurations
We evaluated the effectiveness of our 
proposed method in detecting R peaks using 
three experimental configurations. The first 
setup involved the Pan-Tompkins algorithm, 
implemented as a baseline for R-peak 
detection. The second configuration used the 
Recurrent Neural Network (RNN) applied 
directly without traditional preprocessing 
steps such as bandpass filtering or 
differentiation. This setup served to evaluate 
the model’s ability to detect R-peaks without 
any preprocessing and provided insight into 
how much preprocessing contributes to 
performance. The third configuration, 
referred to as the improved Pan-Tompkins 
algorithm method, combined Pan-Tompkins-
inspired preprocessing (bandpass filtering 
between 6–16 Hz, differentiation, squaring, 
and moving window integration) with the 
RNN for R peak detection. 

To support qualitative and quantitative 
evaluation, multiple ECG signal segments 
were randomly selected from different patient 
records. One signal segment was used to 
visually demonstrate the transformation 
process through each stage of the algorithm, 
from the original ECG signal to final R-peak 
detection. Additionally, four signal segments 
from four different patients were used to 
compare R-peak detection performance 
across the three experimental configurations.

To assess baseline wander removal, ten ECG 
signal segments from ten different patients 
were randomly selected. For each segment, 
the standard deviation (SD) of the baseline 
component was computed for the raw signal, 
the Pan-Tompkins filtered signal, and the 
signal processed using our improved 
bandpass filtering approach. The SD values 
obtained from the Pan-Tompkins and 
improved methods were then compared using 

a paired t-test, with the corresponding p-
value calculated to determine the statistical 
significance of the observed difference in 
baseline suppression. For qualitative 
illustration, two representative segments 
from these ten were selected to visually 
compare the unfiltered signal, the Pan-
Tompkins filtered output, and the improved 
Pan-Tompkins filtered result. Quantitative 
performance metrics were computed using 
the entire ECG recordings from all patient 
records across both leads to ensure robustness 
and generalizability. However, to assess 
average execution time, a consistent 
representative segment was extracted from 
each record and used uniformly across all 
configurations. 

4. Results 
The effectiveness of our improved algorithm 
was assessed using standard performance 
metrics, including sensitivity, precision, F1 
score, false negative rate (FNR), false posi-
tive rate (FPR), and average execution time. 
These metrics were evaluated on all ECG 
recordings across both leads from the MIT-
BIH Database, as summarized in Table 1 for 
Lead II and Table 2 for Lead V5. Standard 
deviation noise (SDN) and baseline wander 
are not independent, with baseline wander 
partly contributing to SDN.15 A decrease in 
standard deviation reflects a reduction in 
baseline wander, indicating lower variability 
in the ECG signal. Accordingly, standard de-
viation was used to assess baseline drift, with 
lower values suggesting reduced wander and 
improved signal quality, as presented in       
Table 3. Figure 5 shows the signal at different 
stages of our improved algorithm. 
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(a)

(b)

(c)

Figure 5. Stages of our improved algorithm: (a) Original ECG, (b) Preprocessed signal after 
filtering, differentiation, squaring, and integration, (c) Detected R peaks.
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Table 1. Comparison of Performance Metrics on Lead II

Table 2. Comparison of Performance Metrics on Lead V5

Table 3. Standard deviation of the baseline wander in original and filtered signals

A paired t-test was conducted to compare the 
standard deviation values obtained using the 
Pan-Tompkins bandpass filter and the 
improved Pan-Tompkins bandpass filter 
across the ten signal segments. The test 
revealed a statistically significant reduction in 
baseline drift using the improved method (p = 
0.0273).  

Figures 6,  7, and  8 below show a visual 
comparison of ECG signals using the three 
experimental configurations. In these figures, 
false detections are indicated in green, and 
missed detections are shown in purple.
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Figure 6. ECG signals processed using the Pan-Tompkins algorithm.

Figure 7. ECG signals processed using the RNN with the unprocessed ECG signal.

Figure 8. ECG signals processed using our improved Pan-Tompkins algorithm.
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Figure 9. Comparison of baseline wander reduction on first two ECG signals (Signal 1 and 
Signal 2). Each set shows the original signal, filtered signal using the standard Pan-Tompkins 
method, and filtered signal using the improved 6–16 Hz bandpass filter.
5. Discussion
Figure 6, 7, and 8 illustrate the performance 
of the three experimental R peak detection 
methods: the Pan-Tompkins algorithm, an 
RNN model using the unprocessed ECG 
signal, and the improved Pan-Tompkins 
algorithm. The primary objective of this 
study was to address key limitations in the 
Pan-Tompkins algorithm, particularly with 
sensitivity to noise, signal variability, and 
real-time delay, while ensuring adaptability 
across diverse ECG morphologies.

Although reliable, the Pan-Tompkins 
algorithm (Figure 6) exhibited increased 
latency and was more susceptible to baseline 
wander and morphological variations, which 
impacted detection accuracy under non-ideal 
conditions. Its reliance on fixed thresholds 
made it less effective when processing ECG 
signals with varying amplitudes or irregular 
morphologies. 

The RNN model, using the unprocessed ECG 
data (Figure 7), demonstrated strong 
sensitivity and specificity, learning 
generalized features directly from the signal. 
However, the lack of preprocessing made it 

vulnerable to noise, resulting in inconsistent 
heart rate estimations and lower precision. 
This inconsistency became more evident in 
signals with irregular morphologies, where 
the model failed to generalize effectively, 
leading to false detections and missed peaks.

The proposed improved algorithm (Figure 8) 
significantly enhances signal quality before 
feeding it into the RNN. This led to a 
reduction in the standard deviation of 
baseline drift (Figure 9), yielding a cleaner 
ECG waveform without compromising the 
morphological features essential for accurate 
R peak detection. To quantify this 
improvement, a paired t-test was conducted 
on the baseline standard deviation values 
from ten ECG segments filtered using both 
the Pan-Tompkins and the improved 
bandpass methods. The results showed a 
statistically significant reduction in baseline 
variability with the improved filter, 
confirming the method’s robustness against 
low-frequency drift. With reduced noise 
interference and improved signal clarity, the 
RNN was better equipped to detect peaks 
consistently across different ECG 
morphologies.
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Furthermore, this preprocessing pipeline 
contributed to a notable reduction in 
execution time, which directly translated to 
lower latency. To further strengthen detection 
accuracy, a search-back mechanism was 
incorporated to allow the system to recover 
missed peaks. The search-back logic 
dynamically adjusts based on signal 
variations, boosting recall by capturing peaks 
that may have been skipped due to transient 
noise, amplitude fluctuations, or atypical 
morphology. Importantly, this was achieved 
without significantly increasing processing 
time, ensuring that the algorithm remains 
computationally efficient and suitable for 
real-time use. The combined improvements 
introduced in this study demonstrate the 
potential for a more robust, adaptive, and 
efficient R peak detection method, effectively 
addressing key limitations of conventional 
algorithms and enhancing performance under 
diverse physiological conditions. 

This study, however, has some limitations. 
The algorithm was evaluated only on a single 
database (MIT-BIH Arrhythmia Database), 
which may limit generalizability. Cross-
validation was not performed, affecting the 
assessment of robustness. The method has 
also not yet been deployed in real-world 
clinical or community settings, which is 
important to evaluate practical feasibility and 
impact. Future work should focus on 
implementing the algorithm in community 
health settings across LMICs, where 
accessible and reliable ECG screening can 
play a vital role in early diagnosis and 
intervention. To enhance robustness and 
generalizability, subsequent studies should 
incorporate k-fold cross-validation and 
evaluate performance on larger, more diverse 
ECG datasets, including locally sourced 
datasets from LMIC populations. 
Performance reporting should include 

variability measures, such as the standard 
deviation of precision, recall, and F1-scores, 
to provide a comprehensive assessment of 
reliability.

By prioritizing low computational complexity 
and robustness to noisy acquisition 
environments, this approach directly 
addresses the constraints of ECG deployment 
in primary healthcare facilities across 
LMICs.

6. Conclusion
This study demonstrates that integrating the 
Pan-Tompkins algorithm with a slight 
modification to the bandpass filter and an 
RNN model enhances R peak detection 
accuracy while reducing baseline wander and 
processing latency. The modifications 
introduced led to improved signal quality, 
making the approach more robust against 
noise and morphological variations. These 
advancements support real-time applications 
such as wearable ECG monitoring systems, 
where reliability and efficiency are critical.

7. Recommendations
Future work should aim to validate and 
implement the algorithm in real-world 
settings, particularly in LMICs, and to assess 
its performance across larger, more diverse 
ECG datasets to ensure robustness and 
reliability.
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